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Biological Effects of Short-Term, High-
Concentration Exposure to Methyl
Isocyanate. I. Study Objectives and
Inhalation Exposure Design

by Darol E. Dodd,* Fred R. Frank,* Edward H. Fowler,*
Catherine M. Troup,* and Robert M. Milton*

Early reports from India indicated that humans were dying within minutes to a few hours from exposure
to methyl isocyanate (MIC). Attempts to explain the cause(s) of these rapid mortalities is where Union
Carbide Corporation concentrated its post-Bhopal toxicologic investigations. The MIC studies involving
rats and guinea pigs focused primarily on the consequences of acute pulmonary damage. All MIC inhalation
exposures were acute, of short duration (mainly 15 min), and high in concentration (ranging from 25-
3506 ppm). MIC vapors were statically generated in a double chamber exposure design. Precautionary
measures taken during exposures are discussed. Guinea pigs were more susceptible than rats to MIC
exposure-related early mortality. A greater than one order of magnitude difference was observed between
an MIC concentration that caused no early mortality in rats (3506 ppm) and an MIC concentration that
caused partial (6%) early mortality in guinea pigs (225 ppm) for exposures of 10 to 15 min duration. For
both species, the most noteworthy clinical signs during exposure were lacrimation, blepharospasm, and
mouth breathing. Fifteen minute LC;, tests with 14-day postexposure follow-up were conducted, and the
LCs, (95% confidence limit) values were 171 (114-256) ppm for rats and 112 (61-204) ppm for guinea pigs.
Target exposure concentrations for the toxicologic investigations of MIC-induced early mortality were
established. A short summary of pertinent results of Union Carbide Corporation’s post-Bhopal toxicologic

investigations is presented.

Introduction

Background

Union Carbide Corporation first tested methyl iso-
cyanate (MIC) for acute and other types of toxic effects,
including those found with low dose human exposure,
in the early 1960s (1-3). MIC caused severe necrosis of
the skin and eyes, had a low peroral LDy, and was a
potent sensitizing agent in the guinea pig. Human ex-
posure to 1.75 ppm MIC for 1 min resulted in eye ir-
ritation and lacrimation in all those exposed, and nose
and throat irritation in approximately one-half of the
eight subjects. All effects disappeared within 10 min
following termination of the exposure.

Due to the limited design of these early studies, the
less than precise analytical techniques available in the
1960s, and the fact that MIC had been used to produce
commercial carbamylated pesticides, further acute test-
ing in several species and repeated dose testing in rats,
all by inhalation exposure, was done by Union Carbide
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Corporation in the early 1980s (4—6). A discussion of the
results of these MIC studies have been included in this
issue of Environmental Health Perspectives (7-9).
There was good agreement between the results of the
studies performed in the 1960s and the studies con-
ducted in the 1980s (4).

Current Study Objectives and Specific
Areas of Concern

Since the Bhopal incident, Union Carbide Corpora-
tion has performed numerous toxicologic investigations
with MIC. The overall objective of these studies was to
determine the consequences of pulmonary injury follow-
ing an acute exposure of high MIC vapor concentration
and to elucidate the pathogenesis of early mortality.
These studies were intended to complement, but not
duplicate, the National Institute of Environmental
Health Sciences MIC studies initiated in 1985. Numer-
ous early reports from the media indicated that humans
were dying within minutes to a few hours from exposure
to the material that drifted over Bhopal. There were a
number of symptoms described and opinions rendered



14 DODD ET AL.

as to why these deaths occurred. An attempt to explain
the cause of these early mortalities is where Union Car-
bide Corporation concentrated its efforts.

Since previous studies (4,5) indicated the guinea pig
to be the most sensitive species to acute MIC exposure
as compared to rats and mice, the guinea pig was se-
lected for the present investigations to focus on the
pathogenesis of early mortality. The rat was also se-
lected to ascertain any species differences related to
MIC exposure. Early mortality was defined as death
occurring within 4 hr following a single MIC exposure
of 15 min duration.

Many of the symptoms of Bhopal victims could have
fit any or all of several pathophysiologic disturbances
which, if severe enough, could result in rapid death.
Union Carbide Corporation chose to investigate the fol-
lowing pathophysiologic mechanisms: (1) an inhibition
of cholinesterase activity, (2) an alteration of hemoglo-
bin function, (3) gas exchange impairment in the lung,
(4) morphologic alteration of the lung compromising gas
exchange, (5) development of disseminated intravas-
cular coagulation, and (6) activation of the complement
system resulting in adult respiratory distress syn-
drome.

Methyl isocyanate is used as a chemical intermediate
in the production of carbamate pesticides, several of
which are potent, though reversible, cholinesterase in-
hibitors (10). Brown et al. (11) have observed the in-
hibition of cholinesterase activity by several diisocyan-
ates and isocyanates. Thus, erythrocyte cholinesterase
activity was measured in the present studies following
both in vitro and in vivo MIC exposure (12).

Hemoglobin alteration by MIC was also studied
(12,13) because isocyanates, including MIC, and cya-
nates are known to increase the oxygen affinity of the
hemoglobin of persons with sickle cell anemia, returning
their hemoglobin oxygen affinity to the range of normal
hemoglobin (14-17). It was postulated that carbamy-
lation of normal hemoglobin could increase oxygen af-
finity to a point where the oxygen would not be released
in peripheral circulation and result in hypoxia at the
tissue level. In previous studies (6), a decrease in ox-
ygen content of hemoglobin and an increase in hemo-
globin concentration were observed in rats repeatedly
exposed to 3.1 ppm of MIC.

During the course of these investigations on hemo-
globin, a variety of respiratory parameters, including
blood gas partial pressures, pH, oxygen saturation, ox-
ygen content, as well as serum chemistry and hema-
tologic parameters, were measured (12). The results
indicated the development of a condition of severe aci-
dosis. This led to a series of controlled ventilation ex-
periments with guinea pigs to further study the effect
of MIC on the gas exchange functions of the lungs (18).
Also, the effect of exposure on the oxyhemoglobin dis-
sociation curve was explored to assist in interpreting
the respiratory function data (13).

A few experiments with MIC were performed by ad-
ministering liquid MIC intravascularly (12). The results
of this work suggested the occurrence of intravascular

coagulation. This finding, coupled with the observation
of increased blood creatine phosphokinase levels, sug-
gested that MIC caused a condition of localized intra-
vascular coagulation resulting in myocardial ischemia
and mortality. This hypothesis was tested in the rat
(12).

Recent medical research is associating activation of
the human complement system with the condition
known as adult respiratory distress syndrome (19-21).
In systemic complement activation, the C3A and C5A
protein fragments that are released when either the
classic or alternate complement pathways are activated
are potent anaphylatoxins. C5A is particularly potent
and among other actions, releases histamines from cells.
The release of C5A anaphylatoxin can be quickly lethal
under certain conditions. MIC activation of the comple-
ment system was investigated to determine what role
it may have in MIC toxicity (22).

Finally, the morphology of the respiratory system,
with emphasis on the gas exchange regions of the lungs,
was examined in rats and guinea pigs acutely exposed
to high concentrations of MIC vapor (23). Wherever
possible, a correlation between lung morphology and
hematologic, blood gas, serum chemistry, and comple-
ment-related changes was provided.

Methods

Test Material

Liquid MIC (CAS No. 624-83-9) was obtained from
either Union Carbide Corporation, Institute Plant
(South Charleston, WV) or Aldrich Chemical Company,
Inc. (Milwaukee, WI).

Inhalation Chambers and MIC Vapor
Generation

Animals were placed into a suspended, stainless-
steel, wire-mesh cage (approximately 450 ecm? floor
space), which was part of a sliding drawer mechanism
on a rectangular-shaped 135-L Plexiglas chamber (Fig.
1). A stainless-steel tray was placed on the chamber
floor and a mixing fan was attached to one wall of the
chamber. For in vitro vapor exposures of biological
specimens, the samples were placed on a magnetic stir-
rer which was positioned on the chamber floor. All MIC
vapor exposures were statically generated (i.e., air was
not passed through the chamber during exposure). The
test material was introduced into the chamber with a
glass syringe through a 1/4 inch stainless-steel bulkhead
sampling port containing a gas chromatograph septum.
Following injection of liquid MIC into the chamber,
evaporation of the sample occurred in a matter of sec-
onds. Chamber concentration reached equilibrium
within approximately 1 min. The sliding cage drawer
mechanism prevented the animals’ introduction into the
chamber until mixing of the MIC with air had equili-
brated. Thus, chamber concentrations were determined
prior to animal exposure. For vapor exposures of the
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FIGURE 1. A static exposure chamber with sliding cage drawer
mechanism was used to expose rats and guinea pigs to atmospheres
containing methyl isocyanate vapor.

biological specimens, the samples were placed into the
chamber prior to the introduction of MIC, and there-
fore, chamber equilibrium time was part of the exposure
time. Chamber temperature and relative humidity were
also monitored during exposures.

Analytical Determination of Chamber
Concentration of MIC Vapor

Chamber air was sampled manually with a glass gas-
tight syringe two to four times per exposure. The 1-mL
air samples were injected into a Perkin-Elmer 3920B
gas chromatograph (GC) equipped with a flame ioniza-
tion detector. Attached to the GC was a Spectra Physics
Series 4000 central processor, data interface, and a
printer/plotter. A 3-ft X 1/4 in. stainless-steel column
packed with Chromosorb 101 (80/100 mesh) support was
used. Calibration of the GC was done with gas bag stan-
dards which were prepared by injecting a known quan-
tity of liquid MIC into a Tedlar gas sample bag of known
volume. A linear calibration curve was obtained when
areas (integration counts) were plotted versus the con-
centrations of the standards. The approximate mini-
mum detection limit was 1 ppm of MIC.

The analytical to nominal (A/N) chamber concentra-
tions of MIC for the static exposures ranged between
0.5 and 0.9. The nominal concentration was determined
by dividing the amount of liquid MIC placed into the
chamber by the chamber volume. One explanation for
the low A/N ratios was the loss of MIC vapor when
animals were introduced into the chamber via the sliding
cage drawer mechanism (Fig. 1). The high reactivity of
MIC may also explain some chamber losses of concen-
tration. In addition, chamber animal load correlated
well with the A/N ratio. For example, experiments in-
volving one to two animals per exposure had A/N ratios
of approximately 0.75, while those involving four to five
animals per exposure had A/N ratios of approximately
0.6. The rate of decay of MIC concentration during ex-
posure was, in general, not greater than 10% during
the 15-min exposures. The factor which appeared most

closely associated with the rate of decay was the amount
of animal urination. Thus, the rate of decay of MIC
chamber concentration was greater during guinea pig
exposures than rat exposures, since a higher incidence
of urination, as well as a greater amount of urination,
occurred in the guinea pigs.

Precautionary Measures During MIC
Exposure

MIC is a flammable, reactive, volatile, and highly
toxic chemical; therefore, numerous precautionary
measures were taken prior to the initiation of exposures
and during MIC exposures. The exposure chamber il-
lustrated in Fig. 1 was placed in a dynamic 900-L ex-
posure chamber, constructed of stainless-steel and
glass, providing a double chamber exposure design (F'ig.
2). The dynamic exposure chamber was operated at an
airflow of approximately 350 L/min. This chamber con-
tains two glove ports on each of two opposing walls
which allows two people to simultaneously perform op-
erations inside the chamber. The injection of liquid MIC
into the static exposure chamber, the introduction and
removal of animals through the sliding drawer mecha-
nism, and the decontamination of MIC vapor within the
static exposure chamber were performed by workers
standing outside of the dynamic exposure chamber.

Attached to the dynamic exposure chamber was a 940-
L stainless-steel and glass glove-box operated with a
dynamic airflow of approximately 350 L/min (Fig. 2). A
hinged air-tight door separates the dynamic exposure
chamber from the glove box. The glove box is equipped
with four glove ports on each of two opposing walls,
and on the far end of the glove box is another hinged
air-tight door, which opens into the room containing the
exposure chamber/glove box assembly. Both the cham-
ber and the glove box are maintained at a negative
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FIGURE 2. A static exposure chamber was placed in a dynamic ex-
posure chamber/glove box assembly providing a double chamber
exposure design to expose rats and guinea pigs to atmospheres
containing methyl isocyanate vapor.
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pressure with respect to the room. This inhalation ex-
posure system (Figs. 1 and 2) provided the means for
quick and easy removal of MIC-exposed animals without
contaminating the personnel involved in vapor exposure
operations. Within 1 min following exposure, animals
could be removed from the double chamber system with-
out release of MIC vapor into the workplace.

The static MIC exposure chamber was decontami-
nated by diluting the vapor with air passing through
the dynamic exposure chamber. The exhaust from the
dynamic exposure chamber/glove box assembly was fil-
tered with two types of activated carbon, whetlerized
CG and standard type VG (Barnabey-Cheney, Colum-
bus, OH), prior to release from the exhaust stack. Dur-
ing exposures, the exhaust stack was monitored for MIC
vapor with a Perkin-Elmer gas sampling system (de-
scribed below). No MIC was detected at the exhaust
stack, indicating the filtration system was adequate for
serubbing MIC vapor.

Additional precautionary measures included a high
speed exhaust fan attached to the room containing the
exposure chamber/glove box assembly which provided
the workplace with a high number of air changes and
kept the room under negative pressure compared to the
rest of the laboratory. Positive-pressure, full-face air
respirators were available in case of emergencies, as
well as backup chamber exhaust fans and emergency
power generation in case of laboratory power failure.
During inhalation exposures, sites surrounding the ex-
posure chamber area were monitored for MIC. Air sam-
pling was performed automatically with a Perkin-Elmer
gas sampling system (station and valve programmer
units and a gas sampling valve) attached to a Perkin-
Elmer 3920B GC equipped with a nitrogen-phosphorus
detector. A Chromosorb 101 stainless-steel column (4
ft X 1/4 in.) was used for the analysis. A real-time
analysis of approximately 30 parts per billion (pbb) was
achieved with this system. The GC was calibrated using
MIC permeation tubes and a VICI Metronics Dynacal-
ibrator 450. The permeation rate of the permeation
tubes was determined gravimetrically.

Animals and Exposure Conditions

Specific pathogen-free (SPF) Sprague-Dawley rats
(200-300 g for males and 195-265 g for females) were
obtained from Harlan Sprague-Dawley, Inc. (Indian-
apolis, IN) and SPF Hartley strain guinea pigs (300—
650 g for the majority of experiments) were obtained
from Hazleton Research Animals (Denver, PA). All
MIC inhalation exposure conditions were acute, of short
duration (mainly 15 min) and high in concentration (a
target concentration range of 25—-3500 ppm). In general,
rats were exposed in groups of four to five and guinea
pigs in groups of three to four, although for some ex-
periments guinea pigs were exposed individually or in
pairs (13,18,22). Food and water were provided ad li-
bitum except during inhalation exposures. In several
experiments, control animals or control biological spec-
imens were exposed statically to air alone to simulate

the MIC exposure conditions. However, in other ex-
periments, control animals were not exposed in cham-
bers to air alone, but simply removed from their housing
quarters. Standard husbandry conditions were main-
tained.

Results and Discussion

LC;, Determinations

Fifteen-minute LCj, values with the traditional 14-
day postexposure observation period were determined
for female rats and female guinea pigs. The LCy, (95%
confidence limit) values were 171 (114-256) ppm and 112
(61-204) ppm for rats and guinea pigs, respectively.
These values are consistent with data from past studies
(3,4,24). The 15-min LCjy, values are also in agreement
with the observation that the guinea pig is more sen-
sitive than the rat following MIC exposure (4,5,7).

Early Mortality Observations

The approximate time of death for rats and guinea
pigs in the 15-min LCs, study was 1 to 3 days postex-
posure. To define the appropriate exposure conditions
for elucidating the mechanism(s) of early mortality, the
next objective was to examine what MIC concentration
was necessary to cause mortality during or soon after
exposure. The early mortality results of rats and guinea
pigs exposed to MIC concentrations ranging from 225
to 3506 ppm for exposure periods of 10 to 20 min are
presented in Table 1. Guinea pigs were clearly more
susceptible than rats to MIC exposure-induced early
mortality.

No apparent mortality differences between sexes
were observed for either rats or guinea pigs (data not
shown). No rats died during or within 10 min postex-
posure for MIC exposure conditions as high as 3506 ppm
and 10 min in duration. However, complete group mor-

Table 1. Early mortality of rats and guinea pigs exposed to
methyl isocyanate vapor.

Deaths during exposure or within

MIC 10 min postexposure
concentration, Exposure

ppm time, min Rats Guinea pigs

3506 10 0/5 (0%)*

2099 10 0/5(0%)

1930 20 0/5(0%)

1516 15 4/4 (100%)

1100 10 0/4 (0%)

1000° 15 0/166 (0%) 6/9(67%)
821 15 3/4(75%)
675° 11-15 17/40 (43%)
600° 15 0/120 (0%)
530 15 6/8 (75%)
350 15 1/8 (13%)
225P 15 4/65 (6%)

*Each ratio reflects the number of deaths/the number exposed.
Numbers in parentheses indicate mortality percentage.

®These are target MIC concentrations. The actual exposure con-
centrations were + 10% of the target concentration.
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tality was observed in guinea pigs exposed to 1516 ppm
of MIC for 15 min. Thus, a greater than one order of
magnitude difference exists between an MIC concen-
tration that caused no early mortality in rats (3506 ppm)
and an MIC concentration that caused partial (6%) early
mortality in guinea pigs (225 ppm) for exposures of 10
to 15 min duration. Nemery et al. (25) observed early
mortality in LAC-P rats exposed for 15 min to an MIC
concentration of 10 mg/L (approximately 4300 ppm).
Their findings, as well as the results of the current
study, indicate early mortality occurs in rats at MIC
concentrations considerably higher than those causing
early deaths in guinea pigs.

Noteworthy clinical signs observed in rats and guinea
pigs exposed to these high (=225 ppm) MIC concen-
trations were lacrimation, nasal wetness, rubbing of
eyes and nose with forepaws, partial to complete closure
of eyelids, salivation, and mouth breathing. A decrease
in respiratory rate (qualitatively assessed) was common
for both species. These clinical signs appeared quickly
(1-3 min), and mouth breathing persisted for several
hours following exposure. Guinea pigs appeared more
restless than rats, and short periods (5-15 sec) of hy-
peractivity were observed in the guinea pigs, although
convulsions were not observed. Prior to death, animals
were prostrate and gasping. The time between gasps
varied, but in general, increased as the moment of death
approached. Animals exposed to MIC did not appear
unconscious, but rats appeared hypoactive. Salmon et
al. (26) observed a pronounced narcotic or sedative ef-
fect in male Lister hooded rats exposed to low concen-
trations of MIC (e.g., 11 ppm); however, this effect was
not observed at higher MIC concentrations, presumably
due to the arousal resulting from severe irritation and
respiratory distress.

To elucidate the cause(s) of early mortality, MIC ex-
posure conditions were selected that would allow a ma-
jority of a group of exposed animals to survive a few
hours postexposure so that blood and tissue samples
could be obtained for toxicologic evaluations. As men-
tioned previously, early mortality was defined as death
occurring within 4 hr following a single MIC exposure
of 15 min duration. Table 2 presents the time of death
and the percentage of mortality for guinea pigs exposed
to target MIC concentrations ranging from 25 to 225
ppm and for rats exposed from 100 to 1000 ppm. All
exposures were 15 min in duration. The highest MIC
concentrations (1000 ppm for rats and 225 ppm for
guinea pigs) caused 69 to 100% mortality between 4 and
16 hr postexposure. An accurate determination of the
percentage of mortality between 0 hr (immediately fol-
lowing exposure) and 4 hr postexposure could not be
made because animals were sacrificed at specified in-
tervals postexposure (0, 1, 2, and 4 hr). The lowest MIC
concentrations (100 ppm for rats and 25 ppm for guinea
pigs) caused no mortality between 4 and 16 hr postex-
posure (Table 2) and were considered unlikely to cause
any deaths since these concentrations were below the
lower limit of the 95% confidence interval of the 15-min
LCs, values. MIC concentrations that caused approxi-

Table 2. Percentage of mortality and time of death for rats and
guinea pigs exposed to high methyl isocyanate concentrations
for 15-min periods.

% Mortality
MIC concentra- Time postexposure
Species tion, ppm® 10 min® 4-16 hr°
Rat 1000 0 69
600 0 47
100 0 0
Guinea pig 225 6 100
125 0 58
25 0 0

2Target MIC concentrations. Actual concentrations were + 10% of
target concentrations, 15-min exposure.

®Includes mortalities occurring during exposure.

¢ Mortality = number of animals found dead 416 hr postexposure/
number of survivors at 4 hr postexposure x 100. Animals found dead
or sacrificed before 4 hr postexposure were not included in this cal-
culation.

mately 50% mortality 4 to 16 hr postexposure were
selected for the intermediate exposure concentrations.
The rat to guinea pig concentration ratio for the three
target MIC concentrations ranged from 4.0 to 5.0.

Several studies performed by Union Carbide Cor-
poration (13,18,22) involved the exposure of guinea pigs
to a target MIC concentration of 675 ppm for 15 min.
This exposure condition caused approximately 50% mor-
tality during or within 10 min postexposure (Table 1).
The purpose of these investigations was to maximize
the opportunity for MIC to gain entry into the animal’s
vascular system via inhalation and to determine any
alterations in specific proteins, such as hemoglobin or
complement, which may have contributed to the cause
of sudden death.

Summary of Union Carbide
Corporation’s Post-Bhopal
Toxicologic Investigations

Early reports from Bhopal indicated that humans
were dying within minutes to a few hours from exposure
to MIC. To examine the probable causes of these rapid
mortalities, studies involving rats and guinea pigs fo-
cused primarily on the consequences of acute pulmonary
damage. All MIC inhalation exposures were acute, of
short duration (mainly 15 min) and high in concentration
(ranging from 25 to 3506 ppm). The MIC vapor expo-
sures were statically generated in a double chamber
design. Guinea pigs were more susceptible than rats to
exposure-related early mortality. A greater than one
order of magnitude difference was observed between
an MIC concentration that caused no early mortality in
rats (3506 ppm) and an MIC concentration that caused
partial (6%) early mortality in guinea pigs (225 ppm).
Early mortality was defined as death occurring within
4 hr following a single MIC exposure of 15 min duration.

Although human, rat, and guinea pig packed eryth-
rocytes exposed in vitro to 100, 500, 1000, or 2000 ppm
of MIC vapor had a concentration-related inhibition of
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cholinesterase activity, in vivo exposure of rats and
guinea pigs to 1000 ppm of MIC did not result in inhi-
bition of erythrocyte cholinesterase (12). Additional no-
teworthy alterations in blood of rats and guinea pigs
exposed in vivo to high concentrations of MIC vapor
were an increase in creatine kinase, increases in hemo-
globin concentration and hematocrit, reticulocytosis
(rats only), and neutrophilia. No direct effects of MIC
on hemoglobin function were observed in guinea pigs
exposed to 700 ppm for 15 min (13). However, blood O,
affinity was reduced due to severe metabolic acid-base
disturbances (lactic acidosis).

Guinea pigs exposed to MIC at concentrations of 240
to 628 ppm had a marked reduction in PaO, and pHa
and an elevated tracheal pressure during artificial ven-
tilation (18). The low PaO, was only slightly elevated
when the animals were ventilated with 100% O,. Thus,
MIC inhalation caused severe pulmonary blood shunting
and ventilation/perfusion imbalance. This, in turn, led
to hypoxemia, metabolic acidosis, and tissue hypoxia,
which could produce death. The pulmonary gas ex-
change deficit presumably resulted from sloughing of
large sheets of conducting airway epithelium together
with fibrin buildup and increased mucus production, re-
sulting in plugging of major airways and atelectasis (23).
The severity of morphological changes was correlated
with exposure concentration and time postexposure in
both rats and guinea pigs. Degenerative changes were
observed in the bronchial, bronchiolar, and alveolar ep-
ithelium, as well as the endothelium in both species.
However, the guinea pig was considerably more sen-
sitive to MIC than was the rat.

Results of experiments in which animals received in-
travenous doses of liquid MIC suggested that dissem-
inated intravascular coagulation may be responsible for
MIC-induced early mortality (12,23). However, in MIC
vapor-exposed animals, the evidence was not strong
enough to support this hypothesis.

The in vitro exposure of human or guinea pig serum
to MIC vapor induced profound alterations in the com-
plement system (22). These complement alterations re-
sulted in reduction of several complement component
functional activities, with the guinea pig complement

system being more sensitive to inactivation than the

human. Results were also obtained which indicated that
complement activation occurred in vivo when guinea
pigs were exposed to MIC vapor for short time periods.
The guinea pig complement consumption profile ob-
served in vivo was qualitatively similar to that seen in
vitro.

The authors are grateful to I. M. Pritts and M. L. Steel for their
assistance in conducting and monitoring the MIC inhalation exposures
and to F. C. Wilt for typing this manuscript.
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